skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hurlbert, Allen H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Research integrated into higher education curricula has been shown by numerous studies to be beneficial to undergraduate students. Citizen science provides an alternative to research performed in a lab and is gaining traction as a good choice for integration into classes. The Undergraduate Student Experiences in Citizen Science (USE Cit Sci) research collaboration network is working to help more instructors in higher education adopt citizen science as part of their curriculum by providing training and educational materials. To date, the Network has identified areas of critical need for citizen science to be more readily used in higher education courses and created a clearinghouse of lessons for faculty to use freely. Forthcoming products of the USE Cit Sci network include direct partnerships between educators and citizen science projects in addition to a peer mentoring program. Given the preponderance of ecology citizen science projects available, bringing this educational opportunity to students opens new avenues of pedagogical experiences. 
    more » « less
  2. Recent reports of insect declines have raised concerns about the potential for concomitant losses to ecosystem processes. However, understanding the causes and consequences of insect declines is challenging, especially given the data deficiencies for most species. Needed are approaches that can help quantify the magnitude and potential causes of declines at levels above species. Here we present an analytical framework for assessing broad‐scale plant–insect phenologies and their relationship to community‐level insect abundance patterns. We intentionally apply a species‐neutral approach to analyse trends in phenology and abundance at the macroecological scale. Because both phenology and abundance are critical to ecosystem processes, we estimate aggregate metrics using the overwintering (diapause) stage, a key species trait regulating phenology and environmental sensitivities. This approach can be used across broad spatiotemporal scales and multiple taxa, including less well‐studied groups. Using community (‘citizen’) science butterfly observations from multiple platforms across the Eastern USA, we show that the relationships between environmental drivers, phenology and abundance depend on the diapause stage. In particular, egg‐diapausing butterflies show marked changes in adult‐onset phenology in relation to plant phenology and are rapidly declining in abundance over a 20‐year span across the study region. Our results also demonstrate the negative consequences of warmer winters for the abundance of egg‐diapausing butterflies, irrespective of plant phenology. In sum, the diapause stage strongly shapes both phenological sensitivities and developmental requirements across seasons, providing a basis for predicting the impacts of environmental change across trophic levels. Utilizing a framework that ties thermal performance across life stages in relation to climate and lower‐trophic‐level phenology provides a critical step towards predicting changes in ecosystem processes provided by butterflies and other herbivorous insects into the future. 
    more » « less
  3. Changes in phenology in response to ongoing climate change have been observed in numerous taxa around the world. Differing rates of phenological shifts across trophic levels have led to concerns that ecological interactions may become increasingly decoupled in time, with potential negative consequences for populations. Despite widespread evidence of phenological change and a broad body of supporting theory, large-scale multitaxa evidence for demographic consequences of phenological asynchrony remains elusive. Using data from a continental-scale bird-banding program, we assess the impact of phenological dynamics on avian breeding productivity in 41 species of migratory and resident North American birds breeding in and around forested areas. We find strong evidence for a phenological optimum where breeding productivity decreases in years with both particularly early or late phenology and when breeding occurs early or late relative to local vegetation phenology. Moreover, we demonstrate that landbird breeding phenology did not keep pace with shifts in the timing of vegetation green-up over a recent 18-y period, even though avian breeding phenology has tracked green-up with greater sensitivity than arrival for migratory species. Species whose breeding phenology more closely tracked green-up tend to migrate shorter distances (or are resident over the entire year) and breed earlier in the season. These results showcase the broadest-scale evidence yet of the demographic impacts of phenological change. Future climate change–associated phenological shifts will likely result in a decrease in breeding productivity for most species, given that bird breeding phenology is failing to keep pace with climate change. 
    more » « less
  4. Abstract This data paper describes a compilation of 73,075 quantitative diet data records for 759 primarily North American bird species, providing standardized information not just on the diet itself, but on the context for that diet information including the year, season, location, and habitat type of each study. The methods used for collecting and cleaning these data are described, and we present tools for summarizing and visualizing diet information by bird species or prey. 
    more » « less
  5. Abstract The availability of citizen science data has resulted in growing applications in biodiversity science. One widely used platform, iNaturalist, provides millions of digitally vouchered observations submitted by a global user base. These observation records include a date and a location but otherwise do not contain any information about the sampling process. As a result, sampling biases must be inferred from the data themselves. In the present article, we examine spatial and temporal biases in iNaturalist observations from the platform's launch in 2008 through the end of 2019. We also characterize user behavior on the platform in terms of individual activity level and taxonomic specialization. We found that, at the level of taxonomic class, the users typically specialized on a particular group, especially plants or insects, and rarely made observations of the same species twice. Biodiversity scientists should consider whether user behavior results in systematic biases in their analyses before using iNaturalist data. 
    more » « less
  6. null (Ed.)
  7. Abstract During biological invasions, invasive populations can suffer losses of genetic diversity that are predicted to negatively impact their fitness/performance. Despite examples of invasive populations harboring lower diversity than conspecific populations in their native range, few studies have linked this lower diversity to a decrease in fitness. Using genome sequences, we show that invasive populations of the African fig fly, Zaprionus indianus, have less genetic diversity than conspecific populations in their native range and that diversity is proportionally lower in regions of the genome experiencing low recombination rates. This result suggests that selection may have played a role in lowering diversity in the invasive populations. We next use interspecific comparisons to show that genetic diversity remains relatively high in invasive populations of Z. indianus when compared with other closely related species. By comparing genetic diversity in orthologous gene regions, we also show that the genome-wide landscape of genetic diversity differs between invasive and native populations of Z. indianus indicating that invasion not only affects amounts of genetic diversity but also how that diversity is distributed across the genome. Finally, we use parameter estimates from thermal performance curves for 13 species of Zaprionus to show that Z. indianus has the broadest thermal niche of measured species, and that performance does not differ between invasive and native populations. These results illustrate how aspects of genetic diversity in invasive species can be decoupled from measures of fitness, and that a broad thermal niche may have helped facilitate Z. indianus’s range expansion. 
    more » « less